ETS API Certificates

Date: 30/09/2020

Document release: v5.3

SEMOpx | Copyright 2018 — All rights reserved

Content

Lo INETOTUCTION ..ottt ettt b b e enes 3
B AUGIEICE ..ottt ettt bbbt 3
D, PUMPOSE ...ttt ettt nenren 3

2. Certification rules and PrOCESScocivirierieiiiiiee ettt sresne e 4
. General INFOMMALIONcc.ooiieeeie ettt be e nes 4
D. CertifiCAtiON PrOCESS.....ccieiecteeecteeeeee ettt e st e s be et e s be e e e besaaentesreennas 4
C. Technical INFOrMALIONc.coueiiiiirieieee ettt 6
d. CSR Creation RUIEScoouiiieeeeetee ettt 7
€. RevoCation Of CEMIfICALEccuiiiirirereeeee et 7
f. Expiration and Renewal of @ CertifiCate............ccoevirererieiieieineereeee e 8

3. From getting your signed certificate (.pem file) to connecting your APl app......c.ccceuveuenee. 9

WILNOUL PASSWOIT: ..ottt ettt na e 10
a. How to install your certificate so you can start your implementationcccccevvevvenenen. 10
D. Why do you Need @ KEY STOME? ...ttt 11
c. JKS and PKCS12 (PFX) Key Store File fOrmatscocooeveveirinenenirereeeeeesesenieeens 11
d. Using JKS or PKCS12 With SOQPUIcceeviiiieiiicese ettt 11

4. Examples of CSR and KeyStore files generationccccovveveieecieneieecececeeie e 12
a. Example of CSR generation using OPENSSLcoieeeiiiieiiieceece e 12
b. Example of PKCS12 keystore generation using OPenSSLccovveveevieeevieieeciesieenns 13
c. Example of JKS keystore generation using Java Keytool.eXe..........cceccevvecverineererseennnn. 13

SEMOpx | Copyright 2018 — All rights reserved

1. Introduction

a. Audience

This document is intended for customers who will use ETS API, SEMOpx Market Operations and
SEMOpx IT Team.

b. Purpose

This documentation provides the information about certificates needed to connect to ETS API Server.

It provides the technical information about certificates, the certificate management process and the
process to obtain a certificate.

SEMOpx | Copyright 2018 — All rights reserved 3

2. Certification rules and process

a. General information

The certificate needed for the ETS API is a signed public key:

. generated by a trusted Certificate Authority (CA),
. based on a certificate signing request customers send to SEMOpx,
. which is created by the customer using the private key

API Customers have to generate the private key. Once the private key has been generated it can be
used to generate the “Certificate Signing Request” file (CSR), as explained below.

Your private key should never be provided to anyone. Should for any reason the private part of the
certificate be shared outside of the member, SEMOpx will not be able to guarantee the member
identity.

The below sections will guide you through the required steps to obtain a signed certificate from
SEMOpx and generate the mandatory technical file (keystore) your API application needs to establish
a secure connection with an ETS API server (section 3).

b. Certification process

The following schema explains the certification process:

MEMBER SEMOpx

Operationnal Team - Technical Team

8. . 8 8

Member Market Operator Technizal Operator
{Technical & Operationnal) .

8 g -8
—t3—
CSR CSR CSR

N /
N

e

Private Key gigned Certificate Signed Certificate Signed Certificate

CA Server

2 CA Certificate

SEMOpx | Copyright 2018 — All rights reserved 4

Semo

Steps:

1. Market Operators validate the Member/ Non Market Participant (DV — ISV) customer identity (referred
below as the “customer”).

2. The customer first generates the private key, and once the key has been generated the CSR can be
generated using that private key.

3. The customer sends by email the CSR file to Market Operators but does NOT share the private key.

4. Market Operators transfer the CSR file to a Technical Operator in order to get the certificate signed.

5. The Technical Operator uses the CSR file and the Certificate Authority (CA) certificate to generate the Signed
certificate (.pem file).

6. The Technical Operator transfers the signed certificate (.pem file) to Market Operators.

7. Market Operators send by email the signed certificate (.pem file) to the customer.

8. What to do with the signed certificate (.pem file)? : please refer to section 3 explaining how to build the Key
Store your API application needs to be able to connect to the ETS API server, using both the private key
generated at step #2 and the signed certificate (.pem file).

Notes:

» The exchanged files (CSR File and Signed Certificate file) are public and can be exchanged by email.
* You can double check your CSR content by using a CSR decoder such as
https://certlogik.com/decoder/

» The only valid certificates that can be used with the ETS API will be signed by the SEMOpx API
Certificate Authority.

SEMOpx | Copyright 2018 — All rights reserved

c. Technical information

In order to ensure a secure communication with ETS API, the following solutions have been
implemented:

- All communications between ETS API Clients (member application) and ETS API Server are
encrypted, using HTTPS

- Bi-lateral authentication system which requires a Client certificate to connect

The following solutions are supported by ETS API:
* - Protocol TLS 1.2 (TLS v1.0 and 1.1 are still supported, but we recommend to use TLS v1.2).
oPlease note that as of ETS 3.5 (Q4 2020):

* TLS v1.0 and 1.1 will not be supported anymore,
= TLS v1.3 will be introduced.

- SHAZ2 cryptographic hash function with RSA encryption for public key (sha256WithRSAEnNcryption)
oNote: other signing algorithms are not supported in this version.

List of supported cipher suites:

Cipher suites Supported today with Supported with TLS v1.3

TLSv1.0,1.1,1.2 (ETS API 3.5)

(ETS API 3.4.3)

Supported Decommissioned
TLS RSA WITH_AES 128 CBC_SHA256

Supported Decommissioned
TLS_RSA _WITH_AES_256_CBC_SHA256

Supported Supported
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

Supported Supported
TLS_ECDHE_RSA WITH_AES_256_GCM_SHA384

Supported Decommissioned
TLS_RSA WITH_AES_256_GCM_SHA384

Supported Supported
TLS_DHE_RSA_WITH_AES 256_GCM_SHA384

Supported Supported
TLS_ECDHE_RSA_WITH_AES 128 CBC_SHA256

Supported Decommissioned
TLS_ECDH_RSA_WITH_AES 128 CBC_SHA256

Supported Supported
TLS_ECDHE_RSA WITH_AES_128 GCM_SHA256

Supported Decommissioned
TLS_RSA_WITH_AES 128 GCM_SHA256

Supported Supported
TLS_DHE_RSA_WITH_AES_128 GCM_SHA256

SEMOpx | Copyright 2018 — All rights reserved

d. CSR Creation Rules

Each certificate is unique and is identified by a combination of Country Name / Organization Name /
Common Name.

This information is used by EPEX SPOT IT for the validation of the CSR and the generation of the
signed certificate.

The following conditions must be met for the creation of the CSR:

Only ASCII characters are accepted
- Country Name (2 letter code) : Must respect the country of the company (Validated by Operators),

- Organization Name (eg, company): Must meet the company short name. The company short name
is the one set by SEMOpx at member registration; please contact Market Operations if you do not
remember your company short name,

- Common Name (e.g. server FQDN or YOUR name): Client name must start with OrganizationName

_ (OrganizationName is the same as previous field). If you have several certificates, this name must
be unique.

Example:

- For test environments SIMU1 and SIMU2: [your company Short Name]ApiClientSimu
- For Production: [your company Short Name]ApiClientProd

e. Revocation of certificate

In case the member would like to revoke a certificate (e.g. the private key is exposed), the process is
as follows:

- The member contacts the Market Operators, who validate member identity

- The member provides Country Name / Organization Name / Common Name combination
which identifies the certificate to be revoked

- The member is contacted (by email) by the Market Operators to confirm the revocation of
his certificate

Once revoked, a certificate cannot be used anymore.

SEMOpx | Copyright 2018 — All rights reserved 7

f. Expiration and Renewal of a certificate

The certificates are valid for 2 years in PRODUCTION and 5 years in SIMULATION.

SEMOpx Market operators monitor PRODUCTION certificates expiry dates and informs customers
one month before the expiry date.

The validity period of a certificate cannot be extended and a new CSR should be provided to
SEMOpx to generate a new signed certificate.

Note: The same “Country Name / Organization Name / Common Name” combination can be used
for the new CSR.

SEMOpx | Copyright 2018 — All rights reserved

Semo

3. From getting your signed certificate (.pem file) to connecting your API
app

Once you received your signed certificate from SEMOpx (.pem file, signed by GlobalSign RSA OV
SSL CA 2018) there are 2 steps you need to follow to get ready:

1. Install the root certificate
2. Build a Key store

These concepts and related tools are described the below sections.

SEMOpx | Copyright 2018 — All rights reserved

Without Password:

a. How to install your certificate so you can start your implementation

SEMOpx signed the certificate and send you a .pem file.
- Please generate a .cer file out of the signed certificate (.pem file) signed sent by SEMOpx
- Double click on the “SEMOpx_customer.cer” file to install the CA root certificate:

Certificate ==

| General | Detais | Certification Path

@ﬂ Certificate Information

This CA Root certificate is not trusted. To enable trust,
install this certificate in the Trusted Root Certification
Authorities store.

Issued to: frveplacc-www02. powernextsa.lig
Issued by: frveplacc-wwwO2.powernextsa.llg

Valid from 04- Aug- 17 to 02- Aug- 27

Learn more about certificates

. once the certificate is installed and added to the Trusted Root you should be able to retrieve WSDL/XSD
files via the Browser itself (favored browser : please use Internet Explorer if you experience difficulties with
Chrome),

. this is a pre-requisite before being able to import the WSDL in your development application (for this you
might need to generate a .jks certificate for Java or a .pkcs12 certificate, like explained below.

The second step is the key store as described below.

SEMOpx | Copyright 2018 — All rights reserved 10

b. Why do you need a Key Store?

Your API application cannot directly use the signed certificate sent by EPEX. It needs in addition your certificate private key
(generated at the same time as your CSR), combined in an appropriate container called a key store.

Key Store = your signed certificate + its private key

This KeyStore file (with any file extension) is required when the application wants to communicate over TLS
through a secure channel.

The most popular keyStore files are:

- JKS (Java KeyStore), a Java proprietary format;
- PKCS12, one of the Public-Key Cryptography Standards, not Java specific

c. JKS and PKCS12 (PFX) Key Store File formats

The biggest difference between JKS and PKCS12 is that:

. JKS is a format specific to Java which stores private keys and certificates.
. PKCS12 is a standardized and language-neutral way of storing encrypted private keys and certificates.

JKS Key store file format

The default and most widely used format for these files is JKS (Java Keystore) for a Java based application until
Java 8. With Java 9, the default Keystore format changed from JKS to PKCS12.

That is until Java 8 your keystore format will be JKS if you don't specify the -storetype while creating your
keystore with the keytool command. However, the default keystore type will be changed to PKCS12 in Java 9
because of its enhanced compatibility compared to JKS.

PKCS12 Key store file format
PKCS#12 is a file format (often called .p12 or .pfx) where you can store a private key and certificates. It's used for
converting/transporting keys and certificates.

PKCS12, is a standard keystore type is not Java specific. It is portable and can be operated with libraries written in
languages such as Java, C, C++ or CH.

d. Using JKS or PKCS12 with SoapUl

With the Soap Ul application, one can use any key store file format (.p12, .pfx, .jks) for a secure communication channel
over TLS. Soap Ul supports all these file formats and works in the same way with all of them.

SEMOpx | Copyright 2018 — All rights reserved 11

4. Examples of CSR and KeyStore files generation

a. Example of CSR generation using OpenSSL

Pre-requisite: OpenSSL must be installed to be able to generate a CSR.

. Command to generate a CSR and Private Key associated with password protection for
private key: openssl req -new -keyout [PrivateKeyPath] -out [CSRPath]
. Command to generate a CSR and Private Key associated without password protection for

private key: openssl req -new -nodes -keyout [PrivateKeyPath] -out [CSRPath]

Generation example on a Linux server (same command line when OpenSSL is installed on Windows):
a) With Password protection for private key

root@luton:~# openssl req -new -keyout /tmp/MyPrivatekey.key -out /tmp/MyCsr.key
Generating a 2048 bit RSA private key
......................... +++

writing new private key to '/tmp/MyPrivatekey.key'’

Enter PEM pass phrase:

verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.

what you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.", the field will be Teft blank.

Country Name (2 letter code) [FR]:FR

State or Province Name (full name) [PARIS]:PARIS

Locality Name (eg, city) [PARIS]:PARIS

organization Name (eg, company) [POWERNEXTSA]:POWERNEXTSA

organizational unit Name (eg, section) [DSI]:DSI

common Name (e.g. server FQDN or YOUR name) []:POWERNEXTSA_Client001
Email Address []:

Please enter the following 'extra’ attributes
to be sent with your certificate request

A challenge password []:

An optional company name []:

SEMOpx | Copyright 2018 — All rights reserved 12

Semo

b) Without Password:

root@luton:~# openss] req -new -nodes -keyout /tmp/MyPrivatekey.key -out /tmp/MyCsr.k
Generating a 2048 bit rRSA private key

....... o

............................... +++

writing new private key to "/tmp/MyPrivateKey.key’

You are about to be asked to enter information that will be incorporated
into your certificate request.

what you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.", the field will be left blank.

Country Name (2 letter code) [FR]:FR

state or Province Name (full name) [PARIS]:PARIS

Locality Name (eg, city) [PARIS]:PARIS

organization name (eg, company) [POWERNEXTSA]:POWERNEXTSA
organizational unit Name (eg, section) [DSI]:DSI

Ccommon Name (e.g. server FQDN or YOUR name) []:POWERNEXTSA_C1ient002
Email Address []:

Please enter the following "extra’ attributes
to be sent with your certificate request

A challenge password []:

An optional company name []:

b. Example of PKCS12 keystore generation using OpenSSL

Pre-Requisites:
- OpenSSL must be installed
- you need to have the private Key file and the signed certificate (.pem file)

Command to generate a PKCS12 with private key and certificate:
openssl pkes12 -in [CertitifactePath] -inkey [PrivateKeyPath] -export -out [Pkcs12Path]

Generation example on a Linux server (same command line when OpenSSL is installed on Windows):

root@scolca001:~# openss] pkcsl2 -in /tmp/ApiExemple.pem -inkey /tmp/ApiExe
mple. key -export -out /tmp/ApiExemple.pl2

Enter pass phrase for /tmp/ApieExemple.key:

Enter Export Password:

verifying - Enter Export Password:

root@scolca00l:~# 1s /tmp | grep pl2

ApiExemple.pl2

root@scolca00l:~# Jj

c. Example of JKS keystore generation using Java keytool.exe

Pre-Requisites:
- Java must be installed
- you need to have a PKCS12 file.

Command to generate a JKS from PKCS12:
keytool.exe -importkeystore -deststorepass [WantedKeystorePassword] -destkeystore
[DestinationKeystoreName.jks] -srckeystore [SourceKeyStore -srcstoretype PKCS12

SEMOpx | Copyright 2018 — All rights reserved 13

Semo

Example:

@ C\Windows\system32\cmd.exe = N |@

C:\Program Files (x86)\Java\jrel.8.0_171\bin>keytool.exe -importkeystore -destst|g
orepass passWord -destkeystore U:\ApiExemple.jks -srckeystore U:\ApiExemple.pl12
-srcstoretype PKCS12

Importing keystore U:\ApiExemple.pl12 to U:\ApiExemple.jks. ..

Enter source keystore password:

Entry for alias 1 successfully imported.

Import command completed: 1 entries successfully imported, © entries failed or
cancelled

Warning:

The JKS keystore uses a proprietary format. It is recommended to migrate to PKCS
12 which is an industry standard format using "keytool -importkeystore -srckeyst
ore U:\ApiExemple.jks -destkeystore U:\ApiExemple.jks -deststoretype pkecsli2".

C:\Program Files (x86)\Java\jrel.8.0_171\bin>

SEMOpx | Copyright 2018 — All rights reserved 14

